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Summary

Accumulating experimental evidence of stochasticity, self-

organization and abrupt non-linear transitions underlying the

dynamics of cellular structure and function is increasingly more

consistent with the concepts and models of phase transitions, critical
phenomena and non-linear thermodynamics rather than with the

conventional clockwork description of the cell. The novel emerging

image of the stochastic cell suggests that familiar and convenient

classico-mechanical interpretations may be limiting our ability to
understand the behavior of biological systems and calls for active

exploration of alternative interpretational frameworks.

IUBMB Life, 57: 59–63, 2005

Keywords stochasticity, self-organization, gene expression, phase
transitions, self-organized criticality, networks biology,
nonequilibrium thermodynamics

The conventional framework, which is commonly used

today for interpretation of experimental reality in molecular

and cell biology, is the Newtonian-Cartesian paradigm of the

world. It is inbuilt and maintained by education and general

culture as a sub-conscious default in the mind of the biological

observer, who tends to design, perform and interpret his or her

experiments in accord with deterministic assumptions and

terms of classical mechanics. The Newtonian interpretational

framework combined with reductionism resulted over time in

a clockwork image of the cell. The complexity of the cell is

generally perceived to be different from the complexity of

clockwork only in terms of quantity, but not in quality, and

the design charts of modern automobile, aircraft and

computer are routinely used as metaphors to illustrate the

complexity and design principles of cellular organization.

However, recent advances in analytical techniques, detection

methods and computer-aided modeling and analysis are

leading to the accumulation of experimental evidence incon-

sistent with the clockwork image of the cell. Specifically,

inherent stochasticity and non-linear response patterns are

emerging as general principles underlying cellular organization

and function. As they are poorly consistent with the

assumptions of design, purpose, linearity and determinism

often implied by the mechanistic paradigm of the cell, the

active search for adequate interpretational frameworks be-

comes the trend and the challenge of the time.

Stochasticity of cellular responses.

The physical dimensions and nature of cells and their

molecular components in times of relative weakness of

detection technology necessary led in the past to the usage

of large populations of cells for quantitation of a particular

parameter pertaining to the individual cell such as, for

instance, a specific mRNA or protein product. Therefore the

parameter measured was averaged over the population, while

individual cells in the ‘‘homogeneous’’ population were

commonly, in harmony with the clockwork intuition, assumed

to be identical. In case of inducible gene expression it was

often observed that a gradual increase in the concentration of

an activating stimulus led to a proportional increase in gene

expression measured as a total mRNA or protein product of a

cell population. As a logical consequence of these observa-

tions, the rheostat or graded model of gene expression was put

forward (1). This model assumes that each cell in a given

population adjusts the rate of expression of a responsive gene

gradually from zero to its maximum in proportion to a raising

concentration of activating stimulus (Fig. 1).

Relatively recently, the technology became widely available

and routinely used that allowed researchers to analyze specific

gene expression and other cellular parameters on a cell-by-cell

basis. As a result, a digital or stochastic model of gene

expression is becoming predominant (see (2) for review and

Table I). According to the stochastic model of gene expression,

every cell in a population has a certain probability to respond

to a given concentration of activating stimulus within a given

time window by transcription of a responsive gene. This
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probability may vary widely among individual cells even

within an isogenic population and the ensuing transcription

follows all-or-none response pattern. The responsive gene is

either maximally expressed in a given cell or not at all. An

increase in the concentration of the activating stimulus results

in the recruitment of increasing numbers of cells that switch in

a digital manner from silence to gene expression (Fig. 1). The

rate of gene expression in recruited cells remains largely

unaffected by further increase in the concentration of

activating stimulus (2,3). Within this model the transcriptional

response is therefore perceived as a transition between two

metastable functional states of the cell. An important corollary

of the stochastic model is that every cell in an organism and

elsewhere may be a unique entity, for every gene has a low, but

larger than zero, probability to be expressed at any given time

even in the absence of an activating stimulus. As the un-

induced genes are indeed expressed at low frequencies (4,5),

even a highly differentiated and specialized group of cells

sharing similar expression profiles is always stochastic in the

sense that it is composed of unique individuals at any given

time due to the inherently probabilistic nature of gene

expression.

The continuing advance and increasingly frequent use of

technology and approaches addressing the behavior of

individual living cells in large populations are leading

gradually to realization that stochasticity and digital, switch-

like functional state transitions are not a peculiar phenomen-

ology specific for gene expression only. On the contrary, they

emerge as general principles underlying the dynamics of

cellular organization and function. Studies performed on

isogenic cell populations and cell culture lines, where popula-

tion dynamics was analyzed on a cell-by-cell basis, revealed an

inherently stochastic nature and all-or-none response pattern

in a wide range of disparate cellular processes such as gene

expression, cell division, commitment to apoptosis (13),

execution of apoptosis (14), response to oxidative stress (15),

differentiation and lineage commitment (16,17), entry into

replicative senescence (18), T cell activation (11), cell integrity

in an ageing animal (19) etc.

It should be noted that the accumulating examples of

stochasticity and digital behavior observed in various

cellular processes are not predicted or systematically sought

after within the conventional paradigm of the cell. On the

contrary, they are counter-intuitive and perceived as

surprises if one sub-consciously pictures the cell designed,

organized and functioning like an aircraft or a computer.

No computers, no aircrafts, no automobiles, ‘‘isogenic’’ as

they are built, acquire spontaneously personality of their

own and respond in a probabilistic manner to environ-

mental cues by all-or-none functional and/or structural

transitions to adjust their metabolism or to enter senescence,

division or self-destruction. It is therefore reasonable to

suggest that the design charts of mechanical and electrical

engineering that are frequently exploited for representation

and conceptualization of cellular organization are hardly

meaningful, if not outright misleading. On the other hand,

the same observations that are seen as paradoxes and

surprises within the conventional paradigm become less

confusing, sometimes even expected and predicted, if one

discards the clockwork image of the cell altogether and

considers the cell as a metastable self-organized system of

conjugated fluxes, or, using a different vocabulary, as a

dynamic integrated system of interacting, interconnected and

interdependent steady-state macromolecular organizations,

reminiscent in its dynamics and behaviour of the integrated

system of human social and business organizations (see (20)

for review).

Stochastic dynamics and self-organization of sub-cellular
compartments and macromolecular complexes.

Recent studies addressing the real-time dynamics of

fluorescently tagged individual molecules in living cells

strongly suggest that the cytoskeleton, chromatin, sub-

cellular and sub-nuclear compartments, as well as macro-

molecular complexes mediating basic cellular processes, are

Figure 1. Cellular responses: graded versus stochastic. It is

generally assumed that cells in isogenic populations display a

graded response (A) to a rising concentration of an inducer.

However, the studies, in which cellular responses are followed

on a cell-by-cell basis, often reveal a stochastic response (B) – a

rise in the concentration of an inducer results in a recruitment

of increasing number of cells that respond in all-or-none

fashion reminiscent of a phase transition. Measurements that

average the response over a cell population (C) are unable to

discriminate between the graded and the stochastic cellular

responses. The common practice to perform averaging

measurements on cell population but interpret the results in

terms pertaining to individual cells has its roots in a clockwork

perception of the cell, may lead to erroneous conclusions and

mask a ubiquity of stochastic responses (see more in the text).
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more adequately described in terms of dynamic steady-state

molecular organizations, rather than as the pre-determined

structures and ‘‘machineries’’ that are assembled and

dissembled according to a pre-conceived design (of Mother

Nature) (21). The molecular constituents of the cell appear

to self-organize themselves spontaneously and transiently

into metastable, morphologically and functionally distinct

macromolecular organizations through dynamic, transient

and inherently stochastic molecular interactions. The mor-

phological appearance and function of these organizations

seem to be defined by the balance between influx and efflux

of their respective resident molecular components, and by

the transient specific associations and activity of these

components within the steady-state organizations (21). The

coordination of their activity is suggested to take place

through continuous exchange of shared molecular compo-

nents (20). Experimental evidence indicates that an increas-

ing number of phenomena in cell and molecular biology,

which were previously considered to be static structures, are

in fact dynamic processes realized in a probabilistic manner

through stochastic molecular interactions. The cytoskeleton

(22), heterochromatin (23), chromatin (24), sub-cellular and

sub-nuclear compartments (21,25), as well as specialized

macromolecular ‘‘machines’’ mediating transcription, DNA

repair and splicing (see (20) for review) are among the most

recent examples of steady-state molecular processes that

seem more appropriate to describe in terms of metastable

attractor states and probabilistic state transitions. The very

abundance of these examples suggests that it may be fruitful

to look more closely at what is traditionally and/or

subconsciously treated as ‘‘structures’’ in biology and

reconsider them as processes.

The novel emerging image of the dynamic cell appears to be

more reminiscent of an integrated system of interacting and

interdependent human social and business organizations and

much less reminds the human-built machines and clockworks.

In consistency with this, the topologies of both protein

interaction and metabolic networks of the cell have been

found to obey a power-law scaling, which is indicative of their

self-organizing nature (26,27). The power-law scaling, as a

signature of self-organized complexity, is shared by many

physical, biological and social phenomena, but is not normally

found in engineered structures and machines built according

to a pre-conceived design (28).

In a search for an alternative framework: phase
transitions, networks biology, self-organized criticality
and dissipative systems.

As more and more of what was previously considered to be

structures and pre-assembled macromolecular ‘‘machines’’

turn upon closer examination into dynamic processes and

steady-state molecular fluxes, the development and application

of novel and adequate concepts and models becomes a matter

of outmost importance. Cellular responses are increasingly

often perceived and modeled as state transitions, analogous to

phase transitions in physical systems (29). While the respective

conceptualization and statistical description seem to be well

consistent with the experimental reality of the stochastic cell,

the conventional notions of linear signaling ‘‘pathways’’,

mechanistic ‘‘switches’’ and deterministic ‘‘programs’’ appear

to provide a poor framework to account for stochasticity and

non-linearity in cellular responses. The models and concepts of

condensed matter physics and nonequilibrium thermody-

namics (30) are becoming popular and increasingly often seen

as more adequate. The self-organized criticality and percola-

tion theory have been applied to analyze mitochondrial

network responses to oxidative stress (31), extracellular matrix

formation (32), metabolite concentration dynamics (33) and

protein interaction networks (34). Cell locomotion (35),

cytoskeletal self-organization (22,36) and metabolic waves

and oscillations (37,38) are treated within the theoretical

framework of chemical dissipative systems. The alliance of the

phase transition formalism and networks biology appears to

be an especially powerful combination that holds a great

promise of imminent breakthroughs in conceptualization of

biological complexity (39 – 41).

Concluding remarks.

Although the amount of information that has been

obtained, analyzed and structured in various biological

databases for the last 50 years is phenomenal and continues

to grow at explosive rates, the progress in the actualization of

this knowledge into an understanding of life systems and their

control appears to be disproportionately slow.

One may argue that the problem as to why there is so much

information and so little comprehension is rooted in the

complexity of biological systems, that once the cell is finally

disassembled to its basic components and all its constituent

molecules and interconnections between them are listed, then

the properly applied math and computers will uncover the

underlying design and engineering charts of life systems

become widely available - to reproduce, to control and to

repair. The alternative opinion is that the problem may be not

so much in the complexity per se, but in the interpretational

defaults, concepts and models used to comprehend this

complexity. If the cell is more adequately described as a

metastable system of conjugated fluxes, then the inadequacy of

classico-mechanistic interpretations should be acknowledged

and models and concepts of condensed matter physics and

nonlinear thermodynamics need to be brought more actively

into and used more widely within the biological research

mainstream. Shifting from models of mechanical and electrical

engineering to models of phase transitions and nonlinear

thermodynamics may prove to be more fruitful and rewarding

in terms of both conceptual biological insights and practical

treatments and drugs.
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PS. Conceptual shift in a historical perspective.

It may be argued that the biological relevance of

stochasticity and non-linear, all-or-none type responses is

not a novel development and has been well appreciated for a

long time. Indeed, as an example, the first experimental

observations of stochastic gene expression in bacterial cells

date back to 50’s (42) with grounding work in this field done in

90’s (see for review (43) and Table I). The realization that

abrupt non-linear transitions play a key role in life phenomena

can be traced even further back to the ‘‘clinamen’’ of

Lucretius, the first century BC (44). However it is reasonable

to suggest that these observations and their appreciation have

remained confined within relatively few isolated domains of

experimental and theoretical research, away from the main-

stream, as they are poorly compatible with the clockwork

interpretation of life phenomena that is tacitly implied in the

dominating Newtonian paradigm of the world. Being confined

and isolated, the earlier studies and insights played never-

theless a crucial role degrading the grasp of deterministic

thinking, spreading the sentiment and preparing the ground

for a conceptual shift. It is the development and the

introduction of novel technologies and methods, in particular

fluorescent probes and advanced imaging techniques, as well

as the proliferation of single cell analysis studies what is

bringing about an explosive accumulation of experimental

evidence implicating self-organization, stochasticity and phase

transition-like responses as basic principles underlying the

dynamics of cellular structure and function. The new image of

the cell as self-organizing molecular system, emerging as a

result of these observations, has far-reaching implications that

necessitate the re-conceptualization of many other widely

accepted dogmas rooted in the mechanistic interpretation such

as deterministic notions of cell differentiation and organism

development, as an example (45). As noticed earlier by T.

Kuhn (46), only the systematic and widespread appearance of

experimental observations inconsistent with the dominating

paradigm, which is sooner or later unavoidably precipitated

by the continuing technological advance, is able to cause a

crisis of that paradigm, stimulating dogma-independent

thought and a search for alternative interpretational frame-

works, a development that is hopefully taking place today.
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